ORIGINAL ARTICLE

ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair

Britta Stordal · Ross Davey

Received: 16 March 2008 / Accepted: 2 June 2008 / Published online: 25 June 2008 © Springer-Verlag 2008

Abstract

Background The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment.

Results A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest.

Conclusion Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1.

 $\begin{tabular}{ll} \textbf{Keywords} & Cisplatin \cdot Oxaliplatin \cdot Resistance \cdot \\ Cell \ cycle \cdot DNA \ repair \cdot ERCC1 \cdot RAD51B \cdot p21 \cdot \\ Small \ cell \ lung \ cancer \\ \end{tabular}$

Introduction

The chemotherapeutic drugs cisplatin and oxaliplatin cause cytotoxicity by covalently binding to DNA forming adducts which hinder both RNA transcription and DNA replication. DNA damage normally causes a coordinated cellular response which involves arrest of the cell cycle to accommodate DNA repair, followed either by resumption of the cell cycle or apoptosis depending on the success or failure of the DNA repair process, respectively. This coordinated response protects against mutations and therefore maintains genomic stability.

The H69CIS200 cisplatin-resistant and H69OX400 oxaliplatin-resistant small cell lung cancer cell lines are novel models of low-level platinum resistance [1]. The H69CIS200 and H69OX400 cell lines were developed from parental H69 small cell lung cancer cells with eight 4-day treatments of 200 ng/ml cisplatin or 400 ng/ml oxaliplatin, respectively. These cell lines are approximately twofold resistant to cisplatin and oxaliplatin and are cross resistant to both drugs. The resistance is not associated with increased cellular glutathione or decreased accumulation of platinum which are common mechanisms of platinum resistance. The H69 platinum sensitive cells enter a lengthy 3 week growth arrest in response to low-level cisplatin and oxaliplatin treatment. This is an example of the coordinated response between the cell cycle and DNA repair. In contrast the H69CIS200 and H69OX400 cells have an alteration in the cell cycle allowing them to rapidly proliferate post drug treatment. The resistant cell lines also have many

B. Stordal · R. Davey (⋈) Bill Walsh Cancer Research Laboratories, Royal North Shore Hospital and The University of Sydney, St. Leonards, NSW 2065, Australia e-mail: rdavey@med.usyd.edu.au

chromosomal rearrangements most of which are not associated with the resistant phenotype, suggesting an increase in genomic instability in the resistant cell lines [2]. We hypothesised that there was a deregulation between the cell cycle and DNA repair in the resistant cell lines allowing proliferation in the presence of DNA damage which has created an increase in genomic instability. Here we investigate the DNA repair processes involved in this deregulation and their role in permitting cell cycle progression in the platinum-resistant cell lines.

Methods

Cell culture

The human H69 small cell lung cancer cell line was obtained from the American type culture collection (Virginia, USA). The H69CIS200 and H69OX400 cells were developed over 8 months with eight 4-day treatments of 200 ng/ml cisplatin and 400 ng/ml oxaliplatin, respectively [1]. There was no change in growth rate or morphology associated with the resistance. All cells and sublines were maintained in drug and antibiotic-free RPMI (Thermoelectron, Sydney, Australia) with 10% FCS in a humidified atmosphere with 5% CO₂ at 37°C. The cultures were tested regularly and were mycoplasma free. Flow cytometry cell cycle analysis and MTT cytotoxicity assays were performed as previously described [1].

Real-time PCR

Total RNA was extracted and purified for real-time PCR using the Atlas pure total RNA labelling system (BD Biosciences). 2 μ g total RNA was converted to cDNA using Bioscript RNase H Minus (Bioline, Sydney, Australia). Primers were designed with Primer 3 [3] with the following parameters, optimum $T_{\rm m}$ of 60°C, and optimum amplicon length of 120 bases and are presented in Table 1. Primers were Guaranteed OligosTM synthesised by Sigma-Proligo (Lismore, New South Wales, Australia). The general 25 μ l

reaction mix for real-time PCR was as follows: 12.5 μ l 2× immomix (Bioline), 0.75 µl forward primer 10 µM, 0.75 µl reverse primer 10 μM, 1.2 μl Sybr-Green 10× stock (Invitrogen, Melbourne, Australia), 1 μl cDNA and 8.8 μl sterile H₂O. The real-time PCR reaction was carried out on a rotor gene real-time PCR machine (Corbett Research, Sydney, Australia). FAM-Sybr Green was detected during the 72°C extension step of each cycle and a melt curve was performed at the end of the run to confirm the amplification of a single product. The cycling conditions were as follows: Step 1, 95°C 10 min; Step 2, 95°C 20 s, 60°C 20 s, 72°C 20 s (40 cycles). The real-time PCR reactions were analysed with Rotor Gene 6 software (Corbett Research). A β actin standard curve using H69 control cDNA serially diluted from 1:10 to 1:10,000 was performed in each realtime PCR run. The reaction rate of each primer set was the same as the β -actin primer set. A C_t value was calculated by Rotor Gene 6 for each unknown sample and standard and relative expression of each unknown sample was interpolated from the β -actin standard curve in each run.

Western blotting

Cells were washed in cold PBS (0.15 M NaCl, 0.03 M NaH₂PO₄, 0.07 M Na₂HPO₄, pH 7.2), and resuspended in 100 μl of lysis buffer (0.01 M Tris/HCl, pH 7.4) at 4°C. 10 μl complete protease inhibitor (Roche, Sydney, Australia) was added prior to sonnication. 20 µg protein was then electrophoresed and Western blotted as previously described [4], with the following modifications. A 12% acrylamide Tris/glycine gels with a 4% stacking gel was used and Biorad broad range markers were used as indicated (Biorad, Sydney, Australia). The blots were then stained with ponceau-s-red solution (Sigma, Sydney, Australia) to check the protein had transferred properly and to enable quantitation of loading in each lane. The primary antibodies and dilutions used were ERCC1 1:200 (ERCC1 Ab-1(3H11) mAb from Labvision via DKSH, Melbourne, Australia), RAD51B 1:1,000 (RAD51B antibody [1H3/13] from Abcam via Sapphire Biosciences, Sydney, Australia), p21 1:1,000 (p21WAF1 Ab-11 (clone CP74) from Labvision

Table 1 Real Time PCR primers

Gene name	Accession	Forward primer				Reverse primer				
		Pos	T_{m}	GC (%)	Sequence	Pos	T_{m}	GC (%)	Sequence	Amplicon
ERCC1	NM001983	841	62.86	55	TCTCCCGGGTGACTGAATGT	970	60.93	55	GGGCATAAGGCCAGATCTTC	129
MSH2	NM000251	2,271	60.66	50	ATCCTCAGGTCTGCAACCAA	2,409	60.68	40	CAAACATGCAAAAAGCACCA	138
RAD51B	NM002875	1,021	57.84	45	TCGCTGATGAGTTTGGTGTA	1,143	60.15	40	ATGCATGGGCGATGATATTT	122
β Actin	NM001101	1,642	59.8	45	TTGAATGATGAGCCTTCGTG	1,771	58.93	52.2	${\tt CTGGTCTCAAGTCAGTGTACAGG}$	129

Pos position

via DKSH, Melbourne, Australia) and phospho-H2AX (Ser 139) (Cell Signalling Technology via Genesearch, Brisbane, Australia). The secondary antibody was alkaline phosphatase (Chemicon, Melbourne, Australia) or HRP conjugated (Santa Cruz Biotechnology via Monarch Medical, Brisbane, Australia) mouse immunoglobin diluted 1:500.

RAD51B immunocytochemistry

 1.25×10^5 cells in 100 µl PBS were cytospun onto Superfrost® Plus slides (Menzel-Glasier via Lomb Scientific, Sydney, Australia.) using reusable Shandon cytospin funnels and disposable filter cards (Thermoscientific, Melbourne, Australia). The slides were air dried and cells were then fixed by incubating the slides in 100% ice cold methanol for 5 min. The slides were air dried and stored at -20° C prior to analysis. The slides were incubated with a serum free protein block (Dako, Sydney, Australia.) for 10 min at room temperature in a humidified atmosphere. All further incubations were also at room temperature in a humidified atmosphere. The blocking solution was tapped off and a 1:100 dilution of RAD51B primary antibody (Abcam clone 1H3/13) was added in antibody diluent (Dako) and incubated for 2 h. The slides were then washed in D-PBS for 5 min. A 1:300 dilution of FITC conjugated anti-mouse secondary antibody in antibody diluent was then added and incubated for 1 h in the dark. The slides were then washed in D-PBS for 5 min. Slides were incubated with a DAPI counterstain (1:50 of 5 mg/ml stock solution in D-PBS) for 5 min in the dark and then again washed in D-PBS for 5 min. Slides were air dried and then coverslipped using PermaFlourTM aqueous mounting medium (thermoelectron). Slides were photographed at 60× magnification using a nikon eclipse 80i microscope. Two photographs were taken of each region of interest, one FITC image for the stained primary antibody of interest and one DAPI image for the nuclei.

Platinated plasmid DNA repair assay

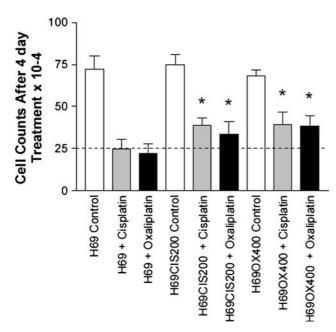
DNA repair was examined using a platinated β -galactosidase reporter plasmid transfected into cells and then β -galactosidase activity was detected in cell lysates using an enzymatic assay. Similar assays have been used in the literature using platinated luciferase [5] and Xgal [6] reporter plasmids. The pEF-Bos- β -galactosidase plasmid (a gift from Cancer Genetics, Kolling Institute, Royal North Shore Hospital) was purified from JM109 cells grown in Luria broth in the presence of 0.1 mg/ml ampicillin, using a Qiagen (Melbourne, Australia) Endofree Plasmid Maxi Kit according to the manufacturer's instructions. The purified plasmids (0.1 mg/ml in TE buffer) were incubated in the dark at 37°C with different concentrations of cisplatin. The

reaction was stopped by adding NaCl to a final concentration of 0.5 M. Plasmid DNA was precipitated with two volumes of 100% ethanol at -70° C in the presence of 2.5 M ammonium acetate, washed in 70% ethanol, dried and dissolved in TE buffer.

 3.25×10^5 H69, H69CIS200 or H69OX400 cells were resuspended in 400 μ l RPMI with serum in a 24 well plate. All transfections were performed in triplicate. 0.2 μ g plasmid DNA (control, 1% or 2% platinated) was diluted in 25 μ l Qiagen Buffer EC then 1.6 μ l Qiagen Enhancer was added and vortexed for 1 s and incubated for 5 min at room temperature. 10 μ l Qiagen Effectene transfection reagent was then added and incubated for 10 min at room temperature. 225 μ l RPMI with serum and antibiotics was then added to the transfection mix which was then added dropwise to the cells. Cells were harvested for the β -galactosidase assay at 24 h after transfection.

Transfected H69 cells were sonnicated for 20 pulses in $100~\mu l~1 \times$ reporter assay lysis buffer (Promega, Sydney Australia). $40~\mu l~$ of lysate was added in duplicate to a 96 well plate, $150~\mu l~$ of assay buffer (8.8 ml phosphate buffer (0.618 g Na₂HPO₄ anhydrous salt, 0.623 g NaH₂PO₄·2H₂O adjusted to pH 7.3 made up to 100~ ml with deionised H₂O and frozen in aliquots at -20°C), $900~\mu l~$ 100~ mM MgCl₂ and $70~\mu l~$ mercaptoethanol made fresh for each assay.) and $50~\mu l~$ of CPRG (1.5 mg/ml, Roche Applied Sciences, Sydney, Australia) was added to each well. The plate was then incubated at 37°C for 6~ h until an orange coloured product was seen. Absorbances were then read at 595~ nm.

Analysis and statistics


Changes in mRNA and protein expression were determined relative to the untreated H69 control. Means and standard deviations are presented in the figures. Significant differences from the H69 control were determined on the raw data using a two tailed student's *t*-test assuming the samples were of equal variance.

Results

Growth and cell cycle characteristics of the platinum resistant cell lines

There was no change in growth rate of the H69CIS200 and H69OX400 resistant cell lines compared to the parental H69 cell line (Fig. 1). Figure 1 also shows the cell viability of the H69, H69CIS200 and H69OX400 cells after a 4-day 200 ng/ml cisplatin or 400 ng/ml oxaliplatin drug treatment, the same doses of drug and length of treatment used in development of the resistant cell lines. All cell lines show decreased growth with treatment. However, the two

Fig. 1 Effect of platinum drug treatment on cell growth. H69, H69CIS200 and H69OX400 cells were treated with either 200 ng/ml cisplatin, 400 ng/ml oxaliplatin or an untreated control for 4 days and viable cells were counted using trypan blue exclusion. The *line* at 25 indicates the starting density of the 4-day culture, 2.5×10^5 cells/ml. * indicates a significant increase in growth of the resistant cells from the sensitive cells

resistant cell lines have significant growth advantage over the parental cells in response to both agents (P < 0.01 t-test).

The cell cycle profile of each cell line at the end of the 4day platinum drug treatments better demonstrates the difference between the sensitive and resistant cells. Figure 2a shows the cell cycle profiles of the untreated sensitive and resistant cells were all the same and typical of cells in logphase growth. After 4 days of treatment with cisplatin or oxaliplatin, the H69 sensitive cells were in a G2 M arrest with increased numbers in sub-G0 and G2 M, decreased numbers in G1 and no change in S phase (Fig. 2b). The cisplatin treated H69CIS200 cells were also arrested showing similar but not as extensive cell cycle changes as the H69 cells (Fig. 2b) while in contrast, the H69OX400 cells did not arrest following oxaliplatin treatment but showed a profile similar to log-phase growth (Fig. 2c). The major difference between the resistant and sensitive cell lines is their rate of growth recovery post platinum drug treatment. Figure 2d shows the effect of treatment on the time to double cell numbers. The dotted line at 4 days indicates the timepoint where drug was removed. For the treated H69 cells the arrest lasted for 3 weeks compared to the oxaliplatin-treated H69OX400 cells that doubled in 5 days (P < 0.001 t-test) and the cisplatin-treated H69CIS200 cells showed an intermediate recovery time of 10 days (P < 0.05t-test).

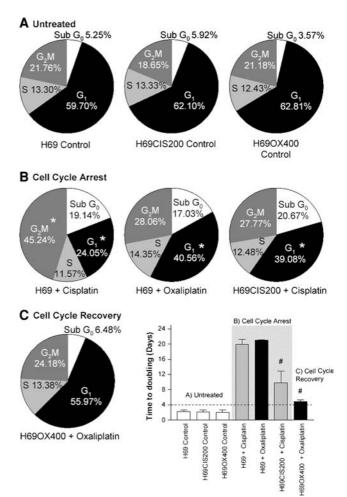
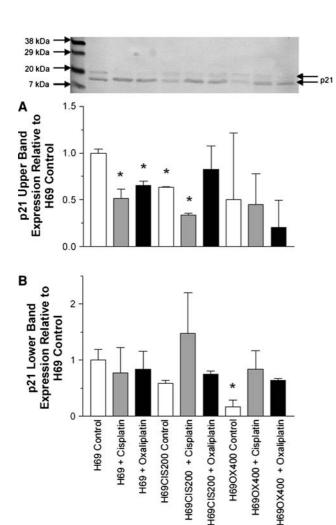


Fig. 2 Effect of platinum drug treatment on cell cycle. H69, H69CIS200 and H69OX400 cells were treated with either 200 ng/ml cisplatin, 400 ng/ml oxaliplatin or an untreated control for 4 days. a Untreated cells, b samples in cell cycle arrest, c samples in cell cycle recovery. * indicates a significant difference from the untreated control. d Time to doubling after a 4-day exposure to cisplatin or oxaliplatin determined by counting cells twice a week using trypan blue exclusion. The *line* at 4 days indicates the time point analysed in parts (a), (b) and (c). Samples in cell cycle arrest at 4-days are indicated with a *grey background*. # indicates a significant difference in recovery of the resistant cells from the sensitive cells


The ability of cells to enter a protective cell cycle arrest and then proliferate later is known as regrowth resistance [1, 7]. This kind of resistance is likely to be underestimated by short term growth curves and toxicity assays. The resistant cells have a greater potential for growth recovery after the toxic agent is removed as can be seen from the cell cycle profile of the H69OX400 cells in Fig. 2c and the time to doubling data in Fig. 2d.

p21

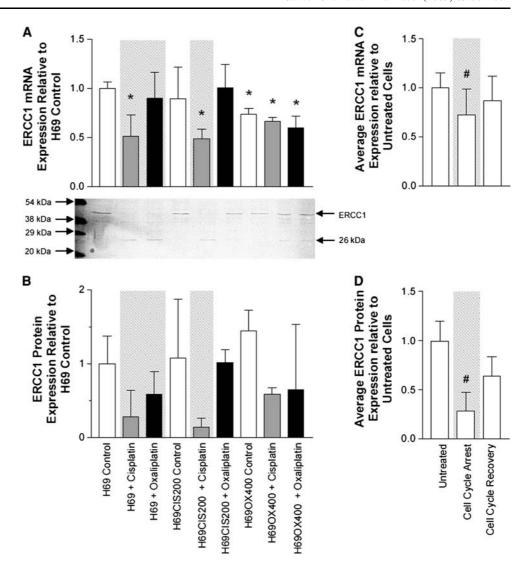
p21WAF1/CIP1 inhibits cell cycle progression at the G1/S checkpoint by binding to and inhibiting the S-phase

promoting Cdk2-CyclinE and Cdk4-CyclinD complexes [8]. We examined the protein expression of p21 by Western blot at the end of the four day platinum drug treatment (Fig. 3a, b). p21 appeared as two distinct bands the upper is the phosphorylated form of the protein [9]. The expression of the upper band significantly decreases in response to platinum drug treatment in the H69 cells relative to untreated cells (Fig. 3a). The upper band was also decreased in both untreated resistant cell lines. The expression of the lower p21 band shows less variability, however it was significantly decreased in the untreated H69OX400 cells compared to the H69 control (Fig. 3b). This decrease in the lower p21 band in the H69OX400 cells was partially reversed by platinum drug treatment but not fully to the level of untreated H69 cells.

Fig. 3 Analysis of p21 protein expression in H69, H69CIS200 and H69OX400 cells after a 4-day exposure either 200 ng/ml cisplatin or 400 ng/ml oxaliplatin. **a** Expression of upper p21 band, **b** expression of lower p21 band. * indicates a significant difference in expression from the H69 control

DNA repair

ERCC1


ERCC1 is involved in the nucleotide excision repair removal of platinum adducts cutting on the 5' side of the damaged DNA to be excised and replaced. ERCC1 is one of many rate limiting proteins involved in the damage recognition and excision process [10]. Increases in the expression of ERCC1 have been previously shown in response to cisplatin treatment and in cisplatin resistant cell models [10]. In contrast, we observed decreases in ERCC1 mRNA and protein expression (Fig. 4a, b). The decreases in ERCC1 protein expression were associated with the formation of a lower molecular weight band of approximately 26 kDa (marked with arrow Fig. 4b). We believe this to be the alternative spliced variant of ERCC1 which is missing exon 8 and has been associated with decreased repair activity [11]. When the changes in ERCC1 mRNA and protein expression were analysed in reference to the cell cycle (Fig. 4c, d), the samples in cell cycle arrest (grey background) had a significant decrease in mRNA and protein expression compared to the untreated control cells. This suggests that ERCC1 expression is more related to the cell cycle state of all cell lines than the resistant phenotype. The samples in cell cycle recovery were not significantly different from the untreated control cells but had lower levels of mRNA and protein suggesting that part of restoring normal cell cycle activity was associated with restoring normal ERCC1 levels.

RAD51B

Homologous recombination repair is in part mediated by the RAD51 proteins [8]. A downregulation of RAD51mediated homologous recombination repair in knockout chicken B lymphocyte DT40 cells resulted in sensitivity to cisplatin treatment [12–14]. Therefore an increase in homologous recombination could mediate platinum resistance by increasing the repair of platinum induced doublestrand DNA breaks. We chose to examine RAD51B as it has been linked to cell cycle control as well as DNA repair [15]. We observed some increases in RAD51B mRNA (Fig. 5a) but no change in protein expression (data not shown). In response to DNA damage RAD51 becomes concentrated in multiple discrete foci. These are thought to represent nuclear domains for homologous recombination repair [16]. The morphology of RAD51 can therefore indicate if it is actively repairing DNA. RAD51B foci were examined by immunocytochemistry in the H69, H69CIS200 and H69OX400 cell lines (Fig. 5b). The number of cells positive for RAD51B foci was counted for six fields of view under the microscope, analysing in total

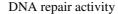
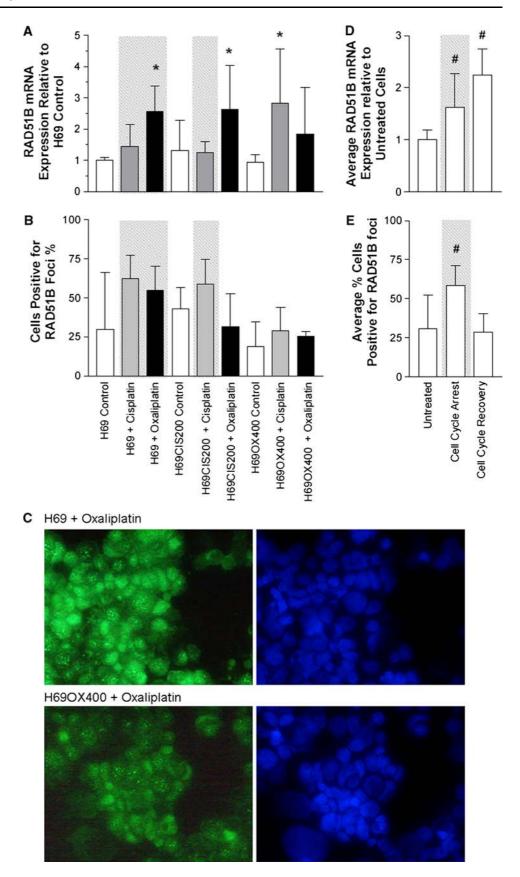


Fig. 4 Analysis of ERCC1 mRNA and protein expression in H69, H69CIS200 and H69OX400 cells after a 4-day exposure either 200 ng/ml cisplatin or 400 ng/ml oxaliplatin. a ERCC1 mRNA expression determined by real-time PCR, **b** ERCC1 protein expression determined by Western blot. Samples in cell cycle arrest are indicated with a grey background. * indicates a significant difference in expression from the H69 control. Analysis of ERCC1 c mRNA and d protein in reference to the cell cycle, means and standard deviations are presented from pooled data from parts (a) and (b). Untreated is the control cells, cell cycle arrest is the drug treated samples in cell arrest indicated with grey background shading, cell cycle recovery is the drug treated cells not in cell cycle arrest. # indicates a significant difference in compared to the untreated samples

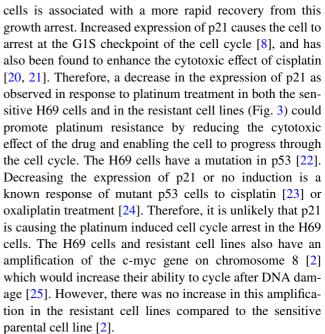
around 400 cells per slide. Cells were deemed positive for RAD51B foci if they had greater than five foci in their nuclei, this criteria has been used in other RAD51 studies [17]. The parental H69 cells had higher levels of RAD51B foci in response to oxaliplatin drug treatment than the H69OX400 cells (Fig. 5c). This is the opposite of what would be expected, since the resistant cells would be expected to have a higher level of repair than the sensitive parental cells.


When the changes in RAD51B mRNA and foci were analysed in reference to the cell cycle state of the sample a pattern emerges (Fig. 5d, e). Both the RAD51B mRNA and activity were increased significantly in the arrested cells compared to the non-arrested controls, suggesting that its expression and activity are related more to the cell cycle than to platinum resistance. The samples in cell cycle recovery had no change in RAD51B foci from the untreated cells suggesting that part of restoring normal cell cycle activity was restoring normal RAD51B foci activity.

The analysis of in vitro DNA repair activity is a compromise at best; some studies determine activity from whole cell extracts or nuclear extracts which may not accurately reflect repair in intact live cells. We have chosen two methods of determining DNA repair activity in intact cells, the phosphorylation of yH2AX and the repair of a transfected platinated plasmid. The expression of phospho-yH2AX is a marker of the early steps of DNA repair, particularly that of homologous recombination of double strand breaks. Phospho-yH2AX is a marker of the detection of these double strand breaks by the cell [18] and not necessarily successful DNA repair. However, cell lines with repair defects have been found to be deficient in phospho-yH2AX [19]. The repair of platinated reporter plasmids best corresponds to nucleotide excision repair, however the transfected plasmid is likely to be in the cytoplasm of the cell rather than the nucleus. Resistant cells with increases in DNA repair [5] or defects in DNA repair [6] have been detected by this

Fig. 5 Analysis of RAD51B mRNA and foci expression in H69, H69CIS200 and H69OX400 cells after a 4-day exposure either 200 ng/ml cisplatin or 400 ng/ml oxaliplatin. a RAD51B mRNA expression determined by real-time PCR, b percentage of RAD51B foci determined by immunocytochemistry. Samples in cell cycle arrest are indicated with a grey background. * indicates a significant difference in expression from the H69 control. c Example of RAD51B foci in H69 and H69OX400 cells treated with oxaliplatin, left FITC panels RAD51B, right DAPI panels cell nuceli. Analysis of RAD51B d mRNA and e foci expression in reference to the cell cycle, means and standard deviations are presented from pooled data from parts (a) and (b). Untreated is the control cells, cell cycle arrest is the drug treated samples in cell arrest indicated with grey background shading, cell cycle recovery is the drug treated cells not in cell cycle arrest. # indicates a significant difference in compared to the untreated samples

method. By using these two methods we have examined the DNA repair pathways in which ERCC1 and RAD51B participate.

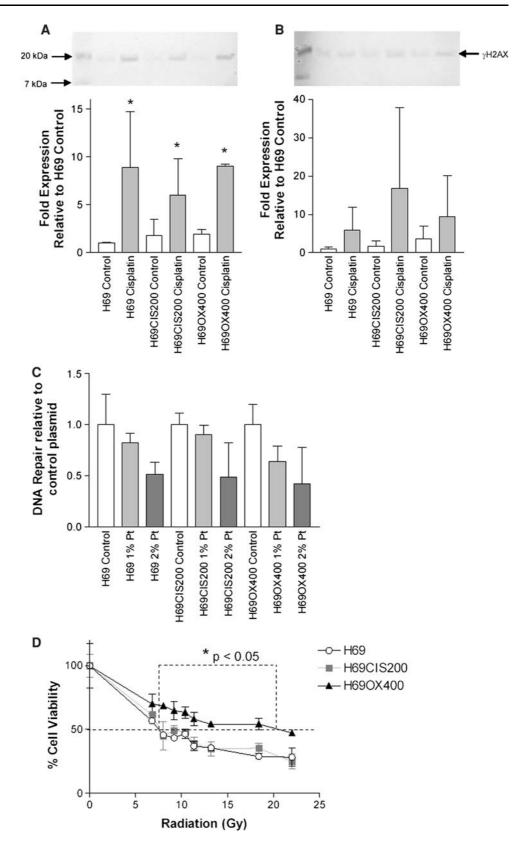

Phospho-yH2AX was examined by Western blot in H69, H69CIS200 and H69OX400 cells which had been drug treated for 4 days with either 200 ng/ml cisplatin or 400 ng/ ml oxaliplatin. However, phospho-yH2AX was undetectable at this time point (data not shown). The phosphorylation of yH2AX is an early event in DNA damage detection and repair [18], therefore H69, H69CIS200 and H69OX400 cells were treated with 200 ng/ml or 5 µg/ml cisplatin for 24 h and examined for γH2AX phosphorylation by Western blot (Fig. 6a, b). Cisplatin treatment at 200 ng/ml induced the same amount of γ H2AX phosphorylation in all cells. Cisplatin treatment at 5 µg/ml induced a higher amount of γH2AX phosphorylation in the resistant cell lines but this result was more variable and was not statistically significant. The higher dose of 5 μ g/ml cisplatin is also above the clinically relevant doses used in the rest of this study. These results suggest that there was no difference in the detection of DNA damage between the sensitive and resistant cell lines as measured by phospho-γH2AX.

 β -galactosidase plasmids were platinated with cisplatin at two different doses, designed to place adducts on 1 and 2% of bases within the plasmid. These were then transfected into the H69, H69CIS200 and H69OX400 cells and β -galactosidase activity compared to an unplatinated control plasmid. β -galactosidase activity was measured at 24 h post transfection, this time point allowed sufficient time for β -galactosidase to be expressed in all samples. Figure 6c shows that there was no increase in DNA repair of the platinated plasmids in the resistant cell lines compared to the parental sensitive cells. There was a small decrease in DNA repair in the H69OX400 cells, however due to slight differences in transfection efficiency between cell lines this was not statistically significant. These results suggest that there is no difference in DNA repair between the sensitive and resistant cell lines as measured by the repair of platinated plasmids.

The H69, H69CIS200 and H69OX400 cells were examined for their response to ionising radiation as cells with increased DNA repair capacity are often radiation resistant. The H69CIS200 cells are not radiation resistant as measured by this 5-day MTT assay (Fig. 6d). The H69OX400 cells were 2.68 fold resistant to radiation compared to the parental cells (P < 0.05 t-test).

Discussion

The H69 parental cells enter a lengthy 3 week growth arrest in response to cisplatin or oxaliplatin drug treatment (Fig. 2d). Resistance in the H69CIS200 and H69OX400


A similar pattern of growth arrest and recovery was observed in the development of cisplatin-resistant IGROV1 ovarian carcinoma cells [26] as in the H69CIS200 and H69OX400 cell lines. Development of resistance to cisplatin in IGROV1 cells was also associated with the ability of the treated cells to progress through the cell cycle beyond the G1/S checkpoint [26]. We have characterised this type of resistance as "regrowth resistance" where the cells arrest and then rapidly proliferate in response to a previously cytotoxic dose of drug [1]. This type of resistance is not related to the p53 status of the cell as the IGROV1 cells are wild-type p53 and increase p21 expression in response to cisplatin drug treatment. The similarity of phenotype is rather linked to the low, clinically relevant dose of drug used in development and the pulsed selection strategy where the cells are allowed to recover in drug free media between treatments.

No change in DNA repair capacity associated with platinum resistance

Although increased nucleotide excision repair can cause cisplatin resistance [10] it appears not to be responsible for the platinum resistance of the H69CIS200 and H69OX400 cell lines as these cells showed no increases in ERCC1 mRNA or protein expression (Fig. 4a, b) and no increase in repair in the platinated repair assay (Fig. 6c). An increase in homologous recombination is also not responsible for the platinum resistance as there was no increase in RAD51B expression or nuclear foci formation (Fig. 5) nor was the level of phospho- γ H2AX increased in the resistant relative to the sensitive H69 cell line (Fig. 6a).

Fig. 6 Analysis of DNA repair in H69, H69CIS200 and H69OX400 cells. Analysis of the expression of phosphoγH2AX in response to a 24 h drug treatment of a 200 ng/ml or **b** 5 μg/ml cisplatin. **c** Analysis of the repair of a platinated plasmid over 24 h. * indicates a significant difference in expression from the untreated control for each cell line. d Radiation resistance in H69, H69CIS200 and H69OX400 cells. Cells were irradiated with the dose indicated, grown for 5 days and cell viability measured using the MTT assay. * indicates a significant difference in IC50 from the H69 control

A decrease in mismatch repair has also been previously associated with cisplatin resistance, as the binding of the mismatch repair complex to Pt-DNA adducts appears to

increase the cytotoxicity of the adducts, either by activating apoptosis or by causing "futile cycling" during trans-lesion synthesis past Pt–DNA adducts [27]. Mismatch repair

protein MSH2 was examined by Western blot and real time PCR and found not to have changed in the resistant cell lines (data not shown). The activity of oxaliplatin in some cisplatin-resistant cell lines is thought to be due to repair or damage recognition processes that discriminate between cisplatin and oxaliplatin adducts. This has been best established for mismatch repair, defects in mismatch repair increase resistance to cisplatin adducts, but have no effect on oxaliplatin adducts [27]. The H69CIS200 and H69OX400 cells are cross resistant to both cisplatin and oxaliplatin, this combined with no decrease of MSH2 suggests that there is no loss of mismatch repair mediating resistance to platinum.

The resistance of the H69CIS200 and H69OX400 cells is therefore unlikely to be the result of changes in the DNA repair pathways which have been previously associated with platinum resistance. This highlights the multifactorial nature of platinum resistance and therefore the difficulty in using DNA repair proteins as markers of platinum resistance in the clinic. Some trials have found an association between ERCC1 and response to cisplatin combination therapy [28–30], but many more have found no association [31–35]. High ERCC1 may correlate with platinum resistance, but low or absent ERCC1 may not always indicate sensitivity as the H69CIS200 and H69OX400 when actively dividing show no change in ERCC1 despite being platinum resistant.

Changes in ERCC1 and RAD51B are associated with cell cycle arrest

The changes in the DNA repair pathways are associated with the platinum induced cell cycle arrest rather than the resistant phenotype. There was a significant decrease in ERCC1 mRNA and protein expression (Fig. 4c, d) and increased RAD51B foci formation (Fig. 5e) associated with the samples in cell cycle arrest. The samples in cell cycle recovery have the same levels of expression of ERCC1 and RAD51B foci as untreated cells. This suggests that these DNA repair proteins are being modulated for reasons other than DNA repair and are potentially participating in the regrowth resistance mechanism of cell cycle arrest and recovery.

There is some evidence to suggest that ERCC1 and RAD51B could mediate a cell cycle arrest. Hepatocytes from ERCC1 knockout mice are arrested in the G2 phase of the cell cycle [36]. The H69 cells enter a G2 arrest in response to platinum drug treatment (Fig. 2) associated with a decrease in ERCC1 expression (Fig. 4). The expression of full length ERCC1 decreases in association with the cell cycle arrest, however this is associated with the formation of an ERCC1 splice variant which has been previously reported to have reduced DNA repair activity [11]. It is

possible that this splice variant may have an increased role in the process of cell cycle arrest. Fibroblasts from ERCC1 knockout mice also show a decreased rate of cell growth and disruptions in cell cycle [37] suggesting that the decrease in ERCC1 may contribute to the lengthy growth arrest in the sensitive cells. Transfection of RAD51B into CHO cells induces a cell cycle G1 delay similar to what was observed in the H69 cells in response to platinum treatment [38]. The cell cycle arrest in both cases appears as a flattening of the G1 peak. Transfection of RAD51 into human and rat fibroblasts also induces a G1 arrest [16].

Confirmation of mechanism of cell cycle arrest by transfection or RNAi?

The next logical step in many research studies of this kind would be to increase the expression of RAD51B by transfection and/or decrease the expression of ERCC1 by RNAi or other methods. However, we believe that these experiments would not conclusively prove the mechanism of regrowth resistance which we have proposed. The changes we have found are transient and associated with cell cycle arrest after platinum treatment, not permanent changes in the resistant cell lines. The resistance produced in this model is low level, and as such is likely to be comprised of many small changes of which we have only identified two in this study. Replicating this mechanism by altering the expression of a two genes is very unlikely.

Increasing the expression of RAD51B would most likely lead to an increase in platinum resistance due to an increase in homologous recombination based DNA repair. This model shows no increase in DNA repair as the increase in RAD51B is transient during the cell cycle arrest. Decreasing the expression of ERCC1 would most likely lead to platinum sensitivity due to a downregulation of nucleotide excision repair as it did in response to ERCC1 siRNA in HeLa S3, MCF-7 and HCT116 cells in a recent study [39]. Again this is not a change observed in this model, and the alteration of ERCC1 may be post-translational modification of the protein rather than a decrease in expression.

Platinum resistance and checkpoint adaptation

The H69CIS200 and H69OX400 cells do not use any of the well characterised mechanisms of platinum resistance such as increased intracellular glutathione, decreased cellular accumulation of drug [1] or increased DNA repair (Fig. 6). Rather, their resistance is dependent on a rapid cell cycle progression after drug treatment. The regrowth resistance arrest is the same in all cells, the resistant cell lines quickly exit this cell cycle arrest despite the presence of DNA damage and continue to cycle. Therefore, the resistant cells

have a decrease in DNA repair in response to platinum drug treatment, not because of a downregulation of a DNA repair pathway but because of the reduced time in cell cycle arrest where the repair occurs.

The cell cycle associated changes in DNA repair proteins may also be contributing to the genomic instability of the cells which will increase the mutagenic potential of the cells in response to further drug treatment. Decreases in ERCC1 [40, 41] and increases in RAD51 [42] have also been associated with increased genomic instability which correlate with the large amount of chromosomal aberrations found in the resistant cell lines [2].

The normal exist from the cell cycle arrest after the successful completion of DNA repair is termed checkpoint recovery. Normal checkpoint recovery in the H69 parental cells is the 3 week growth arrest (Fig. 2d). Checkpoint adaptation is related to checkpoint recovery and promotes cell cycle re-entry even when unrepairable DNA damage is present [43]. Checkpoint adaptation has been well characterised in yeast cells but more recently has been shown to also occur in human cells in response to ionising radiation [44]. The H69CIS200 and H69OX400 cells appear to have the checkpoint adaptation phenotype, the cell cycle continuing despite the presence of DNA damage. The H69OX400 cells exit the cell cycle arrest faster than the H69CIS200 cells and this correlates with the greater amount of chromosomal aberrations in the H69OX400 cell line [2]. This suggests that resistance is largely dependent on the speed at which the cell cycle arrest can be overcome. The H69OX400 have the more 'aggressive' phenotype and this correlates with their cross resistance to ionising radiation (Fig. 6d). The MTT toxicity assay is a 5-day assay, it is likely that the H69CIS200 cells are more radiation resistant than the parental H69 cells, but at this time point they are both in cell cycle arrest and appear the same.

Conclusions

Resistance in the H69CIS200 and H69OX400 cells is not associated with an increase in DNA repair, rather it is associated with the speed of the recovery from the cell cycle arrest which may involve modulation of ERCC1 and RAD51B. These cell models highlight the multifactorial nature of platinum resistance and that clinical markers such as ERCC1 will not identify all types of platinum resistance.

Acknowledgments The authors thank Nghia Le, Laura Castelnoble and David Campbell from Sutton Laboratories at Royal North Shore Hospital for advice on real-time PCR. Thanks to Amy Au and Inge Stewart from Cancer Genetics, Kolling Insitute at Royal North Shore for providing the β-galactosidase plasmid and advice on the β-galactosidase assay. Thanks to Regina Bromley from Radiation Oncology at Royal North Shore Hospital for irradiating the cell lines.

References

- Stordal BK, Davey MW, Davey RA (2006) Oxaliplatin induces drug resistance more rapidly than cisplatin in H69 small cell lung cancer cells. Cancer Chemother Pharmacol 58:256–265
- Stordal B, Peters G, Davey R (2006) Similar chromosomal changes in cisplatin and oxaliplatin-resistant sublines of the H69 SCLC cell line are not associated with platinum resistance. Genes Chromosomes Cancer 45:1094–1105
- Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
- Henness S, Davey MW, Harvie RM, Davey RA (2002) Fractionated irradiation of H69 small-cell lung cancer cells causes stable radiation and drug resistance with increased MRP1, MRP2, and topoisomerase IIalpha expression. Int J Radiat Oncol Biol Phys 54:895–902
- Husain A, He G, Venkatraman ES, Spriggs DR (1998) BRCA1 up-regulation is associated with repair-mediated resistance to cisdiamminedichloroplatinum(II). Cancer Res 58:1120–1123
- McDonald ER III, Wu GS, Waldman T, el Deiry WS (1996) Repair Defect in p21 WAF1/CIP1 -/- human cancer cells. Cancer Res 56:2250–2255
- Preisler HD, Gopal V (1994) Regrowth resistance in leukemia and lymphoma: the need for a new system to classify treatment failure and for new approaches to treatment. Leuk Res 18:149–160
- Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85
- Child ES, Mann DJ (2006) The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell Cycle 5:1313–1319
- Altaha R, Liang X, Yu JJ, Reed E (2004) Excision repair cross complementing-group 1: gene expression and platinum resistance. Int J Mol Med 14:959–970
- Yu JJ, Mu C, Dabholkar M, Guo Y, Bostick-Bruton F, Reed E (1998) Alternative splicing of ERCC1 and cisplatin-DNA adduct repair in human tumor cell lines. Int J Mol Med 1:617–620
- Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, Swagemakers SM, Kanaar R, Thompson LH, Takeda S (2000) The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol 20:6476–6482
- Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, Thompson LH, Takeda S (2001) Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 21:2858–2866
- Yonetani Y, Hochegger H, Sonoda E, Shinya S, Yoshikawa H, Takeda S, Yamazoe M (2005) Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage. Nucleic Acids Res 33:4544–4552
- Havre PA, Rice M, Ramos R, Kmiec EB (2000) HsRec2/ Rad51L1, a protein influencing cell cycle progression, has protein kinase activity. Exp Cell Res 254:33–44
- Raderschall E, Bazarov A, Cao J, Lurz R, Smith A, Mann W, Ropers HH, Sedivy JM, Golub EI, Fritz E, Haaf T (2002) Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis. J Cell Sci 115:153–164
- Russell JS, Brady K, Burgan WE, Cerra MA, Oswald KA, Camphausen K, Tofilon PJ (2003) Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 63:7377–7383
- Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

- Rothkamm K, Kruger I, Thompson LH, Lobrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–5715
- Qin LF, Ng IO (2001) Exogenous expression of p21(WAF1/CIP1) exerts cell growth inhibition and enhances sensitivity to cisplatin in hepatoma cells. Cancer Lett 172:7–15
- Lincet H, Poulain L, Remy JS, Deslandes E, Duigou F, Gauduchon P, Staedel C (2000) The p21(cip1/waf1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. Cancer Lett 161:17–26
- Hensel CH, Xiang RH, Sakaguchi AY, Naylor SL (1991) Use of the single strand conformation polymorphism technique and PCR to detect p53 gene mutations in small cell lung cancer. Oncogene 6:1067–1071
- Qin LF, Ng IO (2002) Induction of apoptosis by cisplatin and its effect on cell cycle-related proteins and cell cycle changes in hepatoma cells. Cancer Lett 175:27–38
- 24. Hata T, Yamamoto H, Ngan CY, Koi M, Takagi A, Damdinsuren B, Yasui M, Fujie Y, Matsuzaki T, Hemmi H, Xu X, Kitani K, Seki Y, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Monden M (2005) Role of p21waf1/cip1 in effects of oxaliplatin in colorectal cancer cells. Mol Cancer Ther 4:1585–1594
- Amati B, Alevizopoulos K, Vlach J (1998) Myc and the cell cycle. Front Biosci d250–d268
- Poulain L, Lincet H, Duigou F, Deslandes E, Sichel F, Gauduchon P, Staedel C (1998) Acquisition of chemoresistance in a human ovarian carcinoma cell is linked to a defect in cell cycle control. Int J Cancer 78:454–463
- Chaney SG, Campbell SL, Bassett E, Wu Y (2005) Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev Oncol Hematol 53:3–11
- 28. Lord RVN, Brabender J, Gandara D, Alberola V, Camps C, Domine M, Cardenal F, Sanchez JM, Gumerlock PH, Taron M, Sanchez JJ, Danenberg KD, Danenberg PV, Rosell R (2002) Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 8:2286–2291
- 29. Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V, Taranchon E, Filipits M, Pirker R, Popper HH, Stahel R, Sabatier L, Pignon JP, Tursz T, Le Chevalier T, Soria JC, LT BIA (2006) I, DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355:983–991
- Dabholkar M, Vionnet J, Bostick-Bruton F, Yu JJ, Reed E (1994)
 Messenger RNA levels of XPAC and ERCC1 in ovarian cancer
 tissue correlate with response to platinum-based chemotherapy.
 J Clin Invest 94:703–708
- Napieralski R, Ott K, Kremer M, Specht K, Vogelsang H, Becker K, Muller M, Lordick F, Fink U, Rudiger SJ, Hofler H, Keller G (2005) Combined GADD45A and thymidine phosphorylase expression levels predict response and survival of neoadjuvant-treated gastric cancer patients. Clin Cancer Res 11:3025–3031
- 32. Wachters FM, Wong LS, Timens W, Kampinga HH, Groen HJ (2005) ERCC1, hRad51, and BRCA1 protein expression in rela-

- tion to tumour response and survival of stage III/IV NSCLC patients treated with chemotherapy. Lung Cancer 50:211–219
- 33. Rosell R, Felip E, Taron M, Majo J, Mendez P, Sanchez-Ronco M, Queralt C, Sanchez JJ, Maestre J (2004) Gene expression as a predictive marker of outcome in stage IIB-IIIA-IIIB non-small cell lung cancer after induction gemcitabine-based chemotherapy followed by resectional surgery. Clin Cancer Res 10:4215s-4219s
- 34. Bepler G, Kusmartseva I, Sharma S, Gautam A, Cantor A, Sharma A, Simon G (2006) RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer. J Clin Oncol 24:4731–4737
- 35. Darcy KM, Tian C, Reed E (2007) A Gynecologic Oncology Group study of platinum-DNA adducts and excision repair crosscomplementation group 1 expression in optimal, stage III epithelial ovarian cancer treated with platinum-taxane chemotherapy. Cancer Res 67:4474–4481
- Nunez F, Chipchase MD, Clarke AR, Melton DW (2000) Nucleotide excision repair gene (ERCC1) deficiency causes G2 arrest in hepatocytes and a reduction in liver binucleation: the role of p53 and p21. FASEB J 14:1073–1082
- 37. Weeda G, Donker I, de Wit J, Morreau H, Janssens R, Vissers CJ, Nigg A, van Steeg H, Bootsma D, Hoeijmakers JH (1997) Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence. Curr Biol 7:427–439
- 38. Havre PA, Rice MC, Noe M, Kmiec EB (1998) The human REC2/ RAD51B gene acts as a DNA damage sensor by inducing G1 delay and hypersensitivity to ultraviolet irradiation. Cancer Res 58:4733–4739
- Chang IY, Kim MH, Kim BH, Lee DY, Kim SH, Kim HY, You HJ (2005) Small interfering RNA-induced suppression of ERCC1 enhances sensitivity of human cancer cells to cisplatin. Biochem Biophys Res Commun 327:225–233
- 40. Melton DW, Ketchen AM, Nunez F, Bonatti-Abbondandolo S, Abbondandolo A, Squires S, Johnson RT (1998) Cells from ERCC1-deficient mice show increased genome instability and a reduced frequency of S-phase-dependent illegitimate chromosome exchange but a normal frequency of homologous recombination. J Cell Sci 111:395–404
- Sargent RG, Meservy JL, Perkins BD, Kilburn AE, Intody Z, Adair GM, Nairn RS, Wilson JH (2000) Role of the nucleotide excision repair gene ERCC1 in formation of recombinationdependent rearrangements in mammalian cells. Nucleic Acids Res 28:3771–3778
- Richardson C, Stark JM, Ommundsen M, Jasin M (2004) Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability. Oncogene 23:546–553
- Harrison JC, Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209–235
- 44. Syljuasen RG, Jensen S, Bartek J, Lukas J (2006) Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res 66:10253–10257

